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Complex mode indicator function to find repeated roots or  
closely coupled modes 

Jelena Dimitrijević, BSc (Eng)1)

Numerical modal analysis by finite element analysis (FEA) and experimental modal analysis (EMA) with multiple 
references were used to find and estimate modal parameters of closely coupled modes for a selected structure, a rec-
tangular aluminium plate. The plate is constructed in such a way to have closely coupled modes. The objective was to 
find closely coupled modes of the plate using the set of frequency response functions (FRFs) that were obtained as a 
result of the experimental modal analysis. Modal parameter estimation the complex mode indicator function in 
ME’scopeVES was applied to the plate to find those modes. Normal mode dynamics by FEA was used to determinate 
their existence before EMA. 

Key words: polyreference method, modal analysis, finite element analysis (FEA), frequency response functions (FRFs), 
complex mode indicator function (CMIF), closely coupled modes, mode shape, damping. 

 

                                                           
1)  Military Technical Institute (VTI), Ratka Resanovića, 11132 Belgrade 

Denotations and symbols 

0N  – number of response points, 

iN  – number of excitation points, 

kN  – number of repeated roots, 

rN  – number of dominant modes, 

rQ  – scaling factor for  mode, thr
rλ  – thr  system pole, 

pjω   frequency domain variable, 

( )k jµ ω  – thk eigenvalue of the normal matrix of FRF
matrix, 

( )k jω∑  – thk  singular value of the FRF matrix, 
f  – frequency (Hz) 
ζ  – damping (%) 

{ }rφ  – thr  mode shape, 

{ }rL  – thr  modal participation factor, 

( ){ p k
u jω }  – unscaled mode shape for thk  repeated root, 

( ){ }p k
v jω  – equivalent mode participation factor for thk

repeated root, 
( )[ ]H jω  – FRF matrix, 

[ ]rA  – thr  residue matrix, 

[ ]Φ  – mode shapes matrix, 

[ ]L  – modal participation factor matrix, 

( )[ ]U jω  – left singular matrix, 

( )jω⎡
⎣ ⎦∑ ⎤  – singular value matrix, 

( )[ ]V jω  – right singular matrix. 

Introduction 
OME test cases in experimental modal analysis require 
measurements with more than one reference point. 

Multiple reference testing is required in cases when a 
structure is very complex (consists of many different parts 
with different structural properties) or when the structure 
has more modes with the same or very close natural 
frequency (repeated roots or closely coupled modes) [1]. 
The structures with repeated roots or closely coupled modes 
have been found in test practice very often. One of them is 
a rectangular plate that is chosen as an example here. In the 
first test case of experimental modal analysis with a roving 
hammer, ignoring the existence of closely coupled modes, 
one referent point at the plate was chosen. Based on a set of 
frequency response functions two close frequencies were 
found, but the obtained mode shapes had the same form. 
Then finite element analysis (FEA) was used to find natural 
frequencies and mode shapes before another test. It was 
obvious that two closely coupled modes were found by 
FEA. Their frequency values were very close while mode 
shapes were completely different. In the next test case, the 
set of frequency response functions was found applying 
experimental modal analysis with two reference points at 
the plate. Multiple reference modal parameter estimation, 
the complex mode indicator function (CMIF) was used then 
to find and to estimate modal parameters of closely coupled 
modes (frequency, damping and mode shapes). 
Finite element analysis of the plate and the second test case 
with two reference points are described here. Theoretical 
part, which describes multiple reference modal testing, 
curve fitting methods and the complex mode indicator func-
tion (CMIF) are represented briefly, also. 

Multiple reference modal testing 
The number of references defines the type of modal 

testing, which could be single or multiple [2].  

S
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Single reference modal testing is the most common type 
of modal testing using either a single fixed input or a single 
fixed output. A roving hammer or a shaker is used as an 
excitation and a single transducer measures the acceleration, 
for example. Single input multiple output (SIMO) is the most 
frequently used single reference modal testing. 

When the structure cannot be adequately excited from 
one reference or one reference cannot excite all modes of 
interest or when the structure has repeated roots or closely 
coupled modes, then more than one reference is needed for 
modal testing. Therefore, two or more fixed inputs or 
outputs have to be used. This is called multiple reference or 
MIMO (multiple input multiple output) modal testing. 
When the inputs are fixed the FRFs are calculated between 
each of the inputs and multiple outputs and they form 
multiple columns of the FRF matrix (the inputs are 
references). Furthermore, when two or more fixed outputs 
are used, the FRFs are calculated between each output and 
multiple inputs and they form multiple rows of the FRF 
matrix (the outputs are references).  

Multiple reference modal testing reduces the likelihood 
of “missing” a mode during the curve fitting process [3]. A 
structure has repeated roots or closely coupled modes if two 
or more of its modes have the same or close frequency but 
different mode shapes. This problem exists with certain 
symmetrical structures or very complex structures.  To be 
able to find repeated roots or closely coupled modes, the 
number of rows or columns of the FRFs matrix must be at 
least equal to the number of modes at the same frequency. 
That means that the number of reference points must be at 
least equal to the number of modes at the same frequency. 
Hence, with two references, two repeated modes can be 
correctly identified; with three references, three repeated 
modes can be correctly identified, etc. 

Curve fitting methods 
After the modal testing, one of the many curve-fitting 

methods is used to identify modes of the structure. All of 
them fall into one of the following categories: 
− Local SDOF (single degree of freedom) 
− Local MDOF (multiple degree of freedom, or multiple 

mode method) 
− Global 
− Multi-reference (poly reference) 

Local SDOF method is the simplest and multi-reference 
methods is the most complicated. The difference between 
SDOF and other methods is that SDOF methods estimate 
modal parameters one mode at a time and MDOF, Global, 
and multi-reference methods can simultaneously estimate 
modal parameters for two or more modes at a time. In 
addition, there is the difference between local and global 
methods. Local methods are applied to one FRF at a time. 
Global and multi-reference methods are applied to an entire 
set of FRFs at once. Local SDOF can be applied to most 
FRF data sets with light modal density. Local MDOF 
methods must be used in cases of high modal density. 
Global methods have to be used for cases with local modes. 
When the set of frequency response functions (FRFs) 
contains repeated roots or closely coupled modes, multiple 
reference curve fitting has to be used. 

Mode indicator functions  
Mode indicator functions (MIF) [4] are normally real-

valued, frequency domain functions that exhibit local minima 

or maxima at the natural frequencies of real normal modes. 
One mode indication function can be plotted for each 
reference available in the measurement data. The primary 
mode indication function will exhibit a local minimum or 
maximum at each of the natural frequencies of the system 
tested and every successive mode indication function will 
exhibit a local minimum or maximum at repeated or pseudo-
repeated roots of the order of two or more. 

There are three different mode indicator methods, the 
modal peaks function (MPF), complex mode indicator 
function (CMIF) and multivariate mode indicator function 
(MMIF). The modal peaks function is calculated by 
summing together the real parts, imaginary parts or 
magnitudes of all FRFs. Complex mode indicator function 
and multivariate mode indication function have entirely 
different computational algorithms but they give similar 
results. MMIF indicates the existence of real normal modes 
and CMIF indicates the existence of real normal or complex 
modes and the relative magnitude of each mode. The 
MMIF is based upon finding a force vector that will exit a 
normal mode at each frequency range of interest, while 
CMIF is based upon finding the corresponding mode shape 
and modal participation vectors. The rational fraction 
polynomial (RFP) curve fitting method is automatically 
selected when either the CMIF or the MMIF mode indicator 
is used. 

Rational fraction form 

The basic task of all multiple mode methods is to 
estimate the coefficients in a multiple mode analytical 
expression for the frequency response function [5]. This is 
done by curve fitting the frequency response function 
(FRF). There are essentially two different forms of the FRF, 
which are used for curve fitting. The FRF can be 
represented in either rational (polynomial) fraction or 
partial fraction form. In either process, all the modal 
parameters (frequency, damping and modal coefficient) for 
all the modes are estimated simultaneously. 

The rational fraction form [6] is the ratio of two 
polynomials: 
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The orders of the numerator and denominator 
polynomials are independent of one another. The equations 
are linear and the coefficients are identified during the 
curve fitting process. The equation (1) is the analytical 
formulation of the FRF data. FRF is the transfer function 
evaluated along the frequency axis. The denominator 
polynomial is called the characteristic polynomial of the 
system. Their roots correspond the poles of the transfer 
function and are called the roots of the characteristic 
polynomial. When the characteristic polynomial is zero, the 
transfer function is infinite. Solutions (roots) for which the 
numerator polynomial is zero are the values where the 
transfer function is zero. These values are called the zeros 
of the transfer function. 

Therefore, solving the roots of the numerator and 
characteristic polynomials, the poles and zeros of the 
transfer function can be determined. A root finding solution 
must then be used to determine the modal parameters.  
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Complex mode indicator function (CMIF) 
Modal identification involves estimating the modal 

parameters of a structural system from the set of FRFs. 
Modal parameters include the complex-valued modal 
frequencies, modal vectors and modal mass. Additionally, 
most current algorithms estimate modal participation 
vectors and residue vectors as part of the overall process. 

The complex mode indicator function [7] appears to be a 
simple and efficient method for identifying the modes of a 
complex system. The CMIF identifies modes by showing 
the physical magnitude of each mode and the damped 
natural frequency for each root. The CMIF can detect 
repeated roots and closely coupled modes due to multiple 
reference data. The CMIF also gives global modal 
parameters, such as damped natural frequencies, mode 
shapes and modal participation vectors. The concept of 
CMIF is developed by performing singular value 
decomposition (SVD) of the frequency response functions 
(FRFs) matrix at each spectral line.  

In multiple references modal testing the FRF matrix 
describes the multiple input/multiple output relationship. 
The FRF matrix of the structure at each spectral line of an 
N degree-of-freedom system can be expressed as in 
equation (2). The mass matrix of the structure is assumed to 
be the identity for simplification. 
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where: 
0N  - number of response points, 

iN  - number of excitation points, 

( )[ ]H jω - FRF matrix of size 0N  by , iN

[ ]rA  - thr  residue matrix of size 0N  by , iN

{ }rφ  - thr  mode shape of size  by 1, 0N

{ }rL  - thr  modal participation factor of size 0N  by 1, 

rQ  - scaling factor for  mode, thr
rλ  - system pole value of  mode. thr
Equation (2) in the matrix form is 
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where: 

[ ]Φ  - mode shapes matrix of size 0N  by  2N

[ ]L  - modal participation factor matrix of size iN  by 2N

In equation (2), the response of the structure 
( )[ ]H jω due to a unit excitation force at a particular 

frequency ω  can be described as a sum, linear 
combination, of 2  residue matrices N [ ]rA  divided by the 
distance between modal frequency (system pole) rλ  and 
the discrete frequency (sampling frequency location in the 
Laplace domain) jω . In addition to the equation, the 
residue matrix is defined as a product of mode shape { }rφ  

and modal participation factor { }H
rL , weighted by a scaling 

factor  (for  mode). The scaling factor can be an 

indicator of the magnitude of the mode when the mode 
shape and modal participation factor are scaled to be 
unitary vectors. 

rQ thr

Using singular value decomposition (SVD) [8], any 
matrix [A] could be decomposed into a product of three 
matrixes. If these matrixes are multiplied, the matrix [A] 
can be written in terms of the linearly independent pieces. 
Also, using SVD the rank of matrix [A] can be determined. 
There are many different applications for SVD and one of 
them is that the SDV is the basis of the CMIF. The FRF 
matrix from several different references can be decomposed 
using SVD to determine where the roots (or modes) of the 
system are. The singular value decomposition is applied on 
the FRF matrix, here. The FRF matrix is decomposed into 
the product of three matrixes, equation (4), for each 
frequency. If the number of effective modes is less than or 
equal to the smaller dimension (number of responses or 
references) of the FRF matrix then using singular value 
decomposition two singular vectors are obtained. 

 ( )[ ] ( )[ ] ( ) ( )[ ]HH j U j j V jω ω ω ω⎡ ⎤= ⎣ ⎦∑  (4) 

where: 
rN  - number of dominant modes, which are the 

modes that contribute to the response of the 
structure at this particular frequency jω , 

( )[ ]U jω  - left singular matrix of size 0N  by (unitary 
matrix), 

rN

( )jω⎡ ⎤
⎣ ⎦∑ - singular value matrix of size  by  

(diagonal matrix), 
rN rN

( )[ ]V jω  - right singular matrix of size  by 
(unitary matrix). 

rN iN

In equation (4), the middle matrix is a diagonal matrix of 
singular values, which are plotted as the CMIF curves. For 

 mode, when the scaling factor  is constant, the 
smaller the distance between modal and discrete frequency 
(see equation (3)), the larger the singular value will be. 
When two different modes are compared, the stronger the 
mode contribution and larger residue value (see equation 
(2)), the larger the singular value will be. The 
corresponding left and right matrixes are singular vectors 
related to mode shapes and modal participation vectors 
respectively. The mode shape and modal participation 
factor are scaled to be unitary vectors (unitary matrixes). 

thr rQ

The CMIF is defined as the eigenvalues solved from the 
normal matrix formed from the FRF matrix at each spectral 
line. Multiplying the FRF matrix (equation (4)) on the left 
by its Hermitian matrix the normal matrix is obtained as:  

  ( )[ ] ( )[ ] ( )[ ] ( ) ( )[ ]2H HH j H j V j j V jω ω ω ω ω⎡ ⎤= ⎣ ⎦∑  (5) 

In addition, the CMIF is equal to the square of the 
magnitude of the singular value of the FRF matrix: 

  (6) ( ) ( ) ( )( 2
k k kCMIF j j jω µ ω ω≡ = ∑ )

where: 
( )kCMIF jω - thk  CMIF at frequency ω  

( )k jµ ω  - thk eigenvalue of the normal matrix of FRF 
matrix at frequency ω , 

( )k jω∑  - thk singular value of the FRF matrix at 
frequency ω . 
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Left matrix in equation (4) is related to mode shapes. For 
the  eigenvalue curve at frequency thk pjω  the unscaled 
mode shape can be obtained from equation: 
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where: 
kN  - number of repeated roots detected at

frequency pjω  

pjω  - requency of detected peaks that is the
approximate damped natural frequency of 
mode 

thr

( ){ p k
u jω }  - unscaled mode shape for thk  repeated root at

pjω  

( ){ p k
v jω }  - equivalent mode participation factor for thk

repeated root at pjω  
The mode shapes do not change much around each peak. 

Several adjacent spectral lines from the FRF matrix can be 
used simultaneously for the better estimation of mode shapes. 

Right matrix in equation (4) is related to modal 
participation factors. A matrix of modal participation 
factors indicates how strongly each mode “participates in” 
the FRFs for each reference, i.e. how well each modal 
vector is excited from each of the reference locations. 

In practice, using ME’scopeVES [9] [10], modal 
parameter estimation is done in several steps: 
1. Determine the number of modes in a frequency band. 
2. Estimate modal frequency and damping for the modes 

in the frequency band. 
3. Estimate modal residues for the modes with frequency 

and damping estimates in the band. 
4. Save the mode shapes into a shape table file. 

In the first step of the CMIF, the eigenvalues of the 
normal matrix are plotted as the CMIF curves on a 
logarithmic magnitude scale as a function of frequency. 
There will be as many curves as the number of references. 
If there are two references, there will be two CMIF curves, 
also. The CMIF curves are displayed together and each of 
them has a different colour. Also, all of the peaks above the 
threshold line are displayed as red dots. An automatic peak 
detector is used to identify the existence of modes. The 
eigenvector corresponding to the detected peak is 
equivalent to the modal participation factor. The modal 
participation factors are obtained in the first step and then 
are used as a weighting function during the next three steps. 
They are kept in memory with the CMIFs but are not 
displayed. The peaks detected in the CMIF plot indicate the 
existence of modes of vibration, the location on the 
frequency axis that is nearest to the pole. It must be noted 
that not all peaks in the CMIF indicate modes. Errors such as 
noise, leakage, nonlinearity and a cross eigenvalue effect can 
also make a peak. For example, the leakage error could be 
minimized if the several spectral lines of data were included 
in the singular value decomposition calculation. The cross 
eigenvalue effect appears when the contribution of two 
modes is approximately equal at a specific frequency. Then 
two eigenvalue curves cross each other at that frequency. 

In the second step, the RFP method performs multiple 
reference curve fitting using the modal participation factors 
to estimate modal frequency and damping for the 
previously detected peaks. The frequency is the estimated 

damped natural frequency and is the frequency at which the 
maximum magnitude of the singular value occurs. Finally, 
the frequencies and damping of all modes are listed in the 
spreadsheet. 

Once the modal frequencies and damping are estimated, 
modal residues, (magnitudes and phases) can be estimated 
in the third step, also using the modal participation factors.  

In the fourth step when the curve fitting is completed, 
mode shapes can be saved according to the relative 
strengths of the modal participation factors for each 
reference and the largest participation factor is automa-
tically chosen for each mode. Mode shapes are saved in the 
shape table file. 

Finally, the CMIF have some advantages and 
disadvantages (limitations) that are useful to know. Some of 
the advantages of the CMIF are: 
− The CMIF identifies the number of modes with the exis-

tence of repeated roots or closely coupled modes of the 
system before modal parameter estimation is applied.  

− The eigenvalues can be used as a weighting function. 
− The CMIF may be used to determine the optimum num-

ber of references necessary to identify all the modes in a 
frequency band. 

− The CMIF minimizes the requirement for user judgment 
and experience.  

− When the contribution of noise is large, the CMIF ig-
nores it by using the singular value decomposition tech-
nique and when it is necessary to reduce the effects of 
errors such as leakage the CMIF uses data over several 
spectral lines in the singular value decomposition.  

− The CMIF is good for Spatial Sine Testing because of 
the uneven frequency spacing data.  

Some limitations are: 
− Multiple reference FRFs information is needed for the 

CMIF calculation. Namely, the number of references 
must be larger than or equal to the number of dominant 
modes at each spectral line. 

− Frequency resolution limits the accuracy of the modal 
parameters. 

− The knowledge of a reduced mass matrix is needed for a 
more accurate CMIF calculation. 

− Second stage procedure is needed for scaled mode 
shapes and more accurate pole estimation. 

Plate model 
One plate of aluminium, whose dimensions are 

482.6x177.8 mm and thickness 4 mm, is chosen for the 
analysis. There are two channels at shorter sides of the 
plate. The dimensions of those channels are 15.5x7.5 mm. 
The plate geometry is shown in Fig.1. Plate mass is 0.92 kg.  
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Figure 1. Plate geometry 
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Finite element analysis (FEA) 

Finite element model for the plate 
Software I-DEAS was used for numerical modal 

analysis. Finite element model was generated on the upper 
surface of the plate. The free thin shell mesh was chosen 
with element thickness of 4 mm. An accelerometer (which 
should be used in experimental modal analysis) of 8 g mass 
(the mass of the glue was ignored) with its base and the part 
of the cable lay on the plate. Since the mass was big enough 
to influence the value of natural frequencies, it was 
modelled as the nonstructural mass. Two accelerometers 
were planned to be used for the experiment and were placed 
in the corners of the shorter side of the plate. At those 
places, the elements of finite element model were 4mm 
thick and had nonstructural mass of 99.5 kg/m2 per area. 
Boundary condition set consisted of all four sides of the plate 
free (free-free condition). The plate is made of aluminium 
and its mass with nonstructural mass of two accelerometers is 
0.936 kg. The finite element model of the plate had 1016 
elements and 1093 nodes and it is shown in Fig.2. 

 

Figure 2. Finite element model 

Results of the FEA 
Normal mode dynamic analysis by Lanczos’ method was 

applied to the finite element model of the plate. As a result, 
the analysis gave nine modal frequencies different from 
zero and nine mode shapes. Because the plate was free, the 
first six modes were modes of the rigid body and their 
frequencies were zero. Mode shapes were inertial 
normalized. Table 1 contains frequency results and it is 
obvious that the frequencies of the sixth mode (496.11 Hz), 
the third bending, and the seventh mode (501.61 Hz), the 
third torsion are very close. The estimation demonstrated 
that those modes are at very close frequencies so it could be 
expected to have those closed values of frequencies or for 
e.g. repeated roots at the experiment. Because of that, 
polyreference method has to be used to find and estimate 
modal parameters of closely coupled modes. 

Table 1. Results of the FEA

 Description ( )Hzf  

1. Frequency of the first longitudinal bending 89.72 
2. Frequency of the first longitudinal torsion 143.22 
3. Frequency of the second longitudinal bending 250.85 
4. Frequency of the second longitudinal torsion 303.35 
5. Frequency of the third longitudinal bending 496.11 
6. Frequency of the third longitudinal torsion 501.61 
7. Frequency of the first transversal bending  655.90 
8. Frequency of the second transversal bending 729.72 
9. Frequency of the fourth longitudinal torsion 758.96 

Mode shapes for two closely coupled modes, the third 
bending and the third torsion are shown in Figures 3 and 4. 

 
Figure 3. The third longitudinal bending 

 
Figure 4. The third longitudinal torsion 

Experimental modal analysis (EMA) 

Measurement and testing equipment 
Testing was carried out with measurement equipment of 

Laboratory for the experimental modal analysis from the 
Military Technical Institute. Hammer B&K 2302-10 was 
used for impulse and accelometers B&K 4507B1 measured 
the response. The signals were recorded and analyzed by 
system B&K PULSE 3560D and software PULSE 
LabShop. 

In the post-processing using ME'scopeVES software, 
one of the mode indicator methods -complex mode 
indicator function (CMIF) is used to help identify the 
number of modes in a band. As it was said, ME'scopeVES 
has a choice between three different mode indicator 
methods: the modal peaks function (MPF), complex mode 
indicator function (CMIF), or multivariate mode indicator 
function (MMIF).  

Model for the experiment 
Because of the symmetry of its geometry, a square plate 

will often have repeated roots or closely coupled modes, which 
cannot be resolved correctly using a single reference curve 
fitting method. If there are two repeated roots, then at least two 
references, or responses (rows or columns) of the FRF matrix 
must be used in order to identify the modal parameters. The 
same case is with this plate where two modes the third 
longitudinal bending and torsion are closely coupled. 

Twenty-seven measurement points were chosen. Two of 
them were reference points where two accelerometers were 
placed in the corners of the shorter side of the plate (points 
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1 and 19). Fig.5 shows the arrangement of the accele-
rometers and measurement points. The whole plate was laid 
on a soft ribbed sponge (the same results would be obtained 
if it was laid on springs), so it could be said it was tested in 
a free-free condition. Plate dimensions are shown in Fig.1. 
Plate mass with accelerometers is 0.936 kg (mass of one 
accelerometer is 5 g and 8 g with the equipment). 

1             2             3              4             5              6              7             8              9

10           11            12           13            14           15            16           17            18

19          20            21           22            23            24           25           26            27

accelerometer
measurement point  

Figure 5. The arrangement of accelerometers and measurement points 

Description of the experiment 
The structure was impacted at 27 points by roving 

hammer in  direction. Two different reference points 
were used, points 1 and 19. Acceleration was measured in 
those points in  directions. As a result, a set of 
frequency response functions (FRFs) were obtained. Based 
on them natural frequencies and damping, as well as 
appropriate mode shapes of the plate, were obtained. 

z−

z+

The measurements were made over a frequency range 
from 0 to 800 Hz with the 0.5 Hz resolution between 
frequency lines. The measuring range for the 
accelerometers was ±2236 m/s2 with exponential type of 
window. The measuring range for the hammer was ±223.6 
N with transient type of window. The record time was two 
seconds for each signal and total number of samples was 
2048 in each pass. Linear scale was used and three averages 
for each point in which the hammer impacted. 

The experimental results 
Frequency response function – FRF 

Fifty-four frequency response functions were obtained 
(twenty-seven for each accelerometer) and they are shown 
in Fig.6. The ordinate represents magnitude in linear scale 
in ((m/s2)/N) and the abscise represents frequency in (Hz) 
in the range from 0 to 800 Hz. 

 
Figure 6. Frequency Response Functions 

Natural frequencies, damping and mode shapes 
Fig.7 shows all FRFs in the frequency range from 450Hz 

to 550 Hz and all peaks are around 495 Hz. Each FRF has 
only one peak around 495 Hz.  

Since the results of finite element analysis had given 
closely coupled modes, it was expected to have them in the 
experiment too. Therefore, multiple reference modal 
parameter estimation algorithms should be used for this set 
of FRFs. For clear presentation, two frequency response 
functions are given parallel (impulse in point 4 and 
response in points 1 and 19) in Fig.8. Left cursor is placed 
at 494 Hz (maximum at lower FRF) and right is placed at 
495 Hz (maximum at upper FRF) to see that these two 
frequencies are so close that they are not visibly separated 
on the FRFs. Frequency range from 490 Hz to 500 Hz was 
chosen to magnify peaks of modes. Magnitude is in linear 
scale.  

In the first test case, experimental modal analysis with 
single reference method extracted two close modes, but 
adequate mode shapes had the same form. That was the 
reason why polyreference method the complex mode 
indicator function (CMIF) in ME'scopeVES was used to 
find these closely coupled modes in the second test case. 
Natural frequencies, damping and mode shapes using the 
previously obtained set of FRFs were obtained by the 
CMIF. The CMIF plot detected ten modes. All were single 
modes (not repeated) except the sixth and the seventh 
mode, which are 1 Hz apart, at 494 Hz and 495 Hz and 
were closely coupled.  

 

Figure 7. Peaks of frequency response functions around 495 Hz

Frequency and damping results obtained by EMA are 
shown in Table 2. At the same table, the frequency results by 
FEA are also given. Comparing the values of natural 
frequencies from finite element analysis and experimental 
modal analysis it can be concluded that they are in the 
permitted area. The only difference occurs in the rigid body 
mode whose natural frequency is 32.6 Hz obtained 
experimentally and the result of FEA is 0 Hz. The frequency 
is different from zero because the plate was laid on a soft 
support, the ribbed sponge, so the rigid body mode is the 
mode of the ribbed sponge here. Using the CMIF, the closely 
coupled modes were successfully extracted in the second test 
case. Mode shapes - the third longitudinal bending (Fig.9) 
and the third longitudinal torsion (Fig.10) obtained by EMA 
have a high degree of similarity with the corresponding mode 
shapes - third longitudinal bending (Fig.3) and the third 
longitudinal torsion (Fig.4) obtained by FEA. 
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The same procedure was done in software I-DEAS also 
by polyreference method and the results were the same. 
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Figure 8. Two FRFs in frequency range from 490 Hz to 500 Hz (impulse 
in point 4 and response in points 1 and 19) 

 
Figure 9. The third longitudinal bending 

Table 2. The results of EMA and FEA 

 Description EMA FEA 
1. Frequency of the ribbed sponge 32.6 9.68 - 
2. Frequency of the first longitudinal bending 96.4 2.75 89.72 
3. Frequency of the first longitudinal torsion 145 1.91 143.22
4. Frequency of the second longitudinal bending 253 0.727 250.85
5. Frequency of the second longitudinal torsion 301 0.562 303.35
6. Frequency of the third longitudinal bending 494 0.3 496.11
7. Frequency of the third longitudinal torsion 495 0.3 501.61
8. Frequency of the first transversal bending  648 1.64 655.90
9. Frequency of the second transversal bending 723 0.46 729.72

10. Frequency of the fourth longitudinal torsion 745 0.389 758.96

 

Figure 10. The third longitudinal torsion 

Conclusion 
In this paper, complex mode indicator function was ap-

plied to find and estimate modal parameters of closely cou-
pled modes. The results of finite element analysis and ex-
perimental modal analysis were also compared. One rectan-
gular plate was chosen as an example for demonstrating the 
extraction of closely coupled modes.  Software I-DEAS was 
used for finite element analysis. The finite element model of 
the plate was generated and normal mode dynamic analysis 
by Lanczos method was applied to it. Two closely coupled 
modes were found - the third longitudinal bending and the 
third longitudinal torsion. The natural frequency results ob-
tained by FEA are presented in Table 1 and mode shapes of 
close coupled modes are shown in Figures 3 and 4. 

After FEA, experimental modal analysis was applied to 
the plate. Two reference points (where the accelerometers 
were mounted) and 27 measurement points (where the ham-
mer impacted) were chosen. As a result, a set of frequency 
response functions (FRFs) was obtained. The plate model 
and its set of FRFs were then exported to ME’scopeVES 
where those FRFs were processed using the CMIF method. 
The CMIF method recovered the modal parameters of all the 
modes including closely coupled modes - the third longitudi-
nal bending and the third longitudinal torsion. Frequency and 
damping values obtained by EMA are presented in Tabele 2 
and mode shapes are shown in Fig.9 – Fig.10. Comparing the 
values of all natural frequencies, obtained by FEA and EMA 
(Table 2) it was concluded that the results are in the permit-
ted area. In addition, on comparing the mode shapes of 
closely coupled modes obtained by FEA and EMA, a high 
degree of similarity was found. 

Finally, it can be concluded that the CMIF method 
successfully separated closely coupled modes. The purpose 
of this paper was to overwhelm the methods for finding and 
estimating the modal parameters of closely coupled modes 
represented on a simple object such as the rectangular plate. 
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Primena funkcije za indikaciju kompleksnih modova pri izdvajanju 
blisko spregnutih modova, ili modova sa višestrukim korenima 

Metoda konačnih elemenata u okviru Numeričke modalne analize i Eksperimentalna modalna analiza sa više 
referentnih tačaka su korišćene da bi se našli i ocenili modalni parametri blisko spregnutih modova na odabranoj 
strukturi, pravougaonoj aluminijumskoj ploči. Ploča je konstruisana tako da ima blisko spregnute modove. Cilj je bio 
izdvajanje ovakvih modova na ploči koristeći skup funkcija frekventnog odziva koje su dobijene kao rezultat 
Eksperimentalne modalne analize. Estimacija modalnih parametara ploče je obavljena uz pomoć Funkcije za 
indikaciju kompleksnih modova u ME’scopeVES-u. Metoda konačnih elemenata je primenjena da bi se utvrdilo 
postojanje blisko spregnutih modova pre primene Eksperimentalne modalne analize. 

Ključne reči: polireferentna metoda, modalna analiza, metoda konačnih elemenata, funkcije frekventnog odziva, 
Funkcija za indikaciju kompleksnih modova, bliski modovi, oblik oscilovanja, prigušenje. 

Primenenie funkcii dl} indikacii kompleksnwh re`imov 
pri vwdelenii blizkosopr}`ënnwh re`imov ili re`imov so 

mnogokratnwmi korn}mi 

Metod kone~nwh &lementov v ramkah ~islennogo modalxnogo analiza i &ksperimentalxnwj modalxnwj 
analiz so mno`estvom ras~ëtnwh to~ek ispolxzovanw ~tobw bwlo vozmo`no najti i ocenitx modalxnwe 
parametrw blizkosopr}`ënnwh re`imov na vwbranoj strukture, na pr}mougolxnoj alyminievoj plite. 
Konstrukci} plitw takova, ~to u neë  blizkosopr}`ënnwe re`imw. $to sdelano so celxy vwdeleni} takih 
re`imov na plite polxzu} sovokupnostx funkcij ~astotnoj ~uvstvitelxnosti, kotorwe polu~enw v forme 
itoga &ksperimentalxnogo modalxnogo analiza. Ocenka modalxnwh parametrov plitw provedena pri 
pomo|i funkcii dl} indikacii kompleksnwh re`imov v ME’scopeVES-u. Metod kone~nwh &lementov 
primenën ~tobw bwlo ustanovleno su|estvovanie blizkosopr}`ënnwh re`imov pered primeneniem  
&ksperimentalxnogo modalxnogo analiza. 

Kly~evwe slova: mulxtipunktnwj metod, analiz re`imov rabotw (modalxnwj metod), metod kone~nwh 
&lementov, funkcii ~astotnoj ~uvstvitelxnosti, funkci} dl} indikacii kompleksnwh re`imov, blizkie 
re`imw, ~astota, forma kolebani}, dempfirovanie. 
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Application de la fonction pour indiquer les modes complexes  
lors de la séparation des modes couplés de près ou des modes à 

multiples racines 
La méthode des éléments finis, dans le cadre de l’analyse numérique modale et l’analyse expérimentale modèle aves 
plusieurs points référentielles ont été utilisées afin de trouver et évaluer les paramètres modaux  des modes couplés de 
près pour la structure choisie, une plaque rectangulaire en alluminium. La plaque est construite de façon à posséder 
les modes couplés de près. Le but était de séparer ces modes sur la plaque en utilisant l’ensemble des fonctions de 
réponse fréquente obtenues comme résultat de l’analyse expérimentale modale. L’estimation des paramètres modaux 
de la plaque a été faite à l’aide de fonction pour l’indication des modes complexes en ME’scope VES.La méthode des 
éléments finis était appliquée pour déterminer l’existence des modes couplés de près avant l’application d’analyse 
expérimentale modale. 

Mots clés: méthode polyréférentielle, analyse modale, méthode des éléments finis, fonctions de réponse fréquente, 
fonction pour indiquer les modes complexes, modes couplés de près, forme d’oscillation, étouffage. 
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