Characteristic Equation From State Space Equation

[SI-A]'=¢(s)

Characteristic Equation: det(sI-A)=0



Chapter 4
Feedback Control System Characteristics

J Transient and Steady-State Response Analysis
J Sensitivity to Model Uncertainties

(] Steady-state Errors (t—>o°): Y(oo), E(o°)

] Disturbance Rejection



Typical Test Signals

Step functions (*)
Ramp functions (*)

mpulse functions (*)

Parabolic functions
Sinusoidal functions (Later in frequency analysis)
White noise



Test signals
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Transient and Steady-State Response

Time response has two parts:

1) Transient Response: System response from initial state to
final state

2) Steady-state Response: System response when t
approaches infinity.

c(t)=C, @)+C_(¢)



First Order Systems

c(t) = Cer () + Css ()

Ts+1

Cis) 1
R(s)  Ts+1




Unit step response of first order systems

C(s)=G(s)R(s)
1

C(s)= Lyu(t
()= -~ L)
1 1 A B

= R _|_

Ts+1s s Ts+1

1o r 1 1

s Ts+1 s s+d/T)
ct)=1—e” for >0 (1)
From Eq (1),
Atr=0, c(r)=0

Att > oo, c(t)=1
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Unit ramp response of first order systems

C(s)=G(s)R(s)
1
Ts+1L{r(t)}
1 1 1 1T T

C(s)=

= 2 2 +
Ts+1s S s Ts+1
ct)=t—T+Te"'"" for t>=0




Steady state
error

T 2T t
Error signal e(t)=r(t)—c(t)=T(1—e™""")
Att=o0, e(c0)=T



Unit impulse response of first order systems

C(s)=G(s)R(s)

1
C(s)= [10(1
()= —— 00}
1 1_1 1
Ts+1 T s+1/T
c(t)=le_”T for t>=0

T



c(t)

c(t)y=—ce



Example of first order system

Displacement
— X -

Velocity v = dx/dt
Acceleration = d’x/dt? = dv/dt

Friction/ Damping b Mass m — Force f

/

First Order Mechanical System



vis) . 1 _ Dm

G(s)= =
F(s) mstb stb/m

The above relation gives the transfer function of the system in Pole-Zero form
with poles at s = -b/m, no finite zero and gain constant = 1/m.

Also, G(s) can be written as,

1/b
(m/b)s+1

G(s)=

t=m/b and K= 1/b



Since F(s) = 1/s for a unit step input, we have

I K
V(s) = ———
s 15+l
Expanding the above equahinn by partial fraction we have

V(s) = K[EL}

s sT+l

Taking the inverse Laplace Transform we get the unit step response of the first
order mechanical ( or any other first order system)system as

v(t) =K(1-e™"

The step response as given by the above Equation is plotted in Figure below; the
two components of the response are plotted separately along with the complete

response. Mathematically, the exponential term do ro in a finite
length of time. The parameter = is called the system|time- constant.




v(t) 1

B 4

Step Response

¢ E—Lff

T el = 03679
2T e % = 0.1353
3T e = 0.0498
4T {:3-4 — 0-0183
57 e = 0.0067




For different values of 1, the step response of a first order system is also shown
in the following Figure.




The parameter K is the system gain, which tells us how much the output

variable will change at steady-state in response to a unit change in the input
variable.

The gain K and time-constant © are the two parameters which describe the
‘personality’ of the first-order system. These parameters may be obtained from

the physical parameters of the system or experimentally by conducting the step-
response test/sinusoidal-response test. The transfer function

G{S):i
Ts+1

is called the time-constant form for first-order transfer functions and will be
encountered in all types of systems—electrical, mechanical, thermal, hydraulic,

etc. A process described by this form of transfer function is called a first- order
lag or a simple lag.



Example of a Second Order System

As an example of a dynamic system represented by a second-order model, we
consider here the spring-mass-damper system studied earlier and shown again
in the following Figure.

wWoall

friction, &

l

Force Fif

(a) (b)
Figura: 02-02
Copynght © 2008 Pearson Prentice Hall, Inc

Spring-Mass-Damper System



d’y(n Y 4 v =
dt’ dt

We see that the differential equation is a constant coefficient second order
differential equation and hence the system is a second order LTI system.
The transfer function of the system with r(t) as the input and y(t) as the output is

M

Y(s) _ 1 I/m
R(s) ms +bstk <t b ot
m m

G(s) =

The equation gives a second order system with two poles and no finite zero.



The above transfer can be written in a more standard form as

Y(s) _ Ko

G(s) = — s j
R(s) s +2o s+ 0,
1 k . 1 Db
Where I{ — — ﬂjﬂ_ _ “: =
k m = 2+km

wn = Un-damped natural frequency of the system
£ = Damping ratio of the system

The characteristic equation is

" H2Em_stm, > =0

The roots of the characteristic equations that are the poles of the transfer
function are

ar e F - "-"2- :
s, ==, + ®.~E -1 ang S, T-Co, — @ /< -1



Transfer function of a second order system (K=1)

Y(s) _ c-:rnl (1)

G(s) = —— -
F(s) s TllosTo

w, = Un-damped natural frequency of the system
£ = Damping ratio of the system

The characteristic equation is

s’ +2Em_s+m_ > =0

The roots of the characteristic equations that are the poles of the transfer
function are

-

=-8o, + @\ -1 and S, =-CO, — @

L n

:
S 21

Jw

1



From equation (1), we can write

0)2

Y(s) = n R(s)
$* +2Em s+ -

For unit step

®’ 1

n

Y(s)= —
s +28m s+ @ S

—s—2Ew, N 1

(s+§0)n)2+wn2(\/1—§2)2 >
1/2
= y(t)=1- : {(&mn)2+mn2(\/1—§2)2} e 5" sin(, \/1- &>t +6)

W, 1-E*

= y(t)=1- ! - e 50! sin(wn\/1—§2t+9)
1-¢

= Y(s)=




Assuming B = +/1-&°

y(t) = I—Ee " sin(®, Bt +0)

where, 6 = tan ™! P _ tan
cw, g
g2
tan O = S
2 l—ﬁz 1 ‘p
sec" =1+ &2 =§2 ICS

O=cos '



Step Response of a Second Order System
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Unit Impulse Response of a Second Order System

2
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Closed Loop Control

o If G(s)H(s)>>1 for all complex freq. of interest,

then:
G G
ro-—9 s G p_ Ly
1+G-H G-H H

IftH=1, Y(s) =R(s) the desired result

R 4 E Y




Closed Loop Control

e By increasing the gain of G(s)H(s) 1t reduces the
effect of G(s) on the input -> variation of the
parameters of the process, G(s), 1s reduced
(advantage of a feedback system)

e But, making G(s)H(s)>>1 can lead to highly
oscillatory & even unstable response

G G
Vis)=— 2 5 9 p_lp
1+G-H G-H H

R 4 E Y




When Process. G(s). is changed

<Open loop> AY(s)=AG(s)R(s)

R(s) —{G(s) — I(s) R+ E G
H [&—
<Closed loop>
G(s)+AG(s)
Y AY(s)= R
(5)+AY(s) 1+(G(s) + AG(s))H(s) () G
Y(s)=——R

Then the change in the output is 1+G-H

AY(s) = AG(s) R(s).

(1+ GH(s)+ AGH(5) 1+ GH(5))

When GH==A GH{(s). as 1s often the case. we have

AY(s) = 3‘?(3] _R(s).
Original T. F. [1 + (—TH(S)]
X
_ G
1+Ge H

Change of the output is reduced by [1 +GH]




System Sensitivity

ST _ Ratio of % change in sys T.F.
G Ratio of % change in "Process” T.F.

AT/ 6T oTG
AG/ 8lnG &
/G 6lnG 8GT

Open-loop

Y(s
AY(s) = AG()R(s). AT(s) = 228

Ry~ A0)




System Sensitivity

Closed-loop
G & (1+GH)-G(H) 1
T(s)= = =

1+GH - 6G  (1+GH)Y  (1+GH)

6T G _ 1 G ~ 1
é¢G T (1+GH )Y G 1+ GH )
1 + GH
T
- Reduced 2 ¢ below that of the open-loop svs by

ST -

mncreasimng G*H (==1.0). oT _ 6T H -GH

- |

* 3 F (GH ==1.0 = Sé=—l cH T 1:1+GH:I

Feedback components should not be wvaried with

environmental changes =2 change in Hfs) directly
effect output response



Control

Disturbance in a system

/ + N
M(s) * /

D(s)

e

1

61(5] ——

Disturbance

M(s)

Gas)

Gp (s)

Y
- 3( ]_

Di(s)
- l : C(s)
K. | ") |G )
Hs) |«
Sensor
By superposition
K. GG, ‘
" — - = Mis
cis) C® T 11 x.66.H (s)
— G
2 D1(s)

"1+K.GG.H
=G, (s)M(s) + G4(s)D<(s)



Disturbance in a system

State Variable Model

X = Ax+ Bu B i)
1 4= 1d0)
y=0Cx

Then T.F. G(s)=C[sI-A]'B
= [Gp (s) Ga(s)]
h S

T.F. from the control T.F. from D(s) to the
Input M(s) to the output output



Disturbance in a close loop system

Plant

D(s)

—»=| G415
Compensator N
s M(s) Cls)
s G.ls) s Gp{s} . B ot

= ————

H(s) ==

Sensor



Disturbance in a close loop system

G
) = - *f R d D
C(s) _L+GPGPH (5}+{1+GFGFH] )

= 1(s) R(s) T I4s) Dfs)

¢ The loop gain G, « G, «H must be made large to reduce

the system sensitivity.
(‘Td Gd

T4=1+G.G,H G.GH

-

Reducing Disturbance

1. Reduce the gain G,(s)

2. Increase the loop gain G.+G,«H (Choice of G,)
3. Reduce the disturbance df(1)

4. Feed forward method if the disturbance can be
measured




Example:
Feed Forward Method

T.F of the disturbance

G, , -G,6G,

Td: E S
1+ (TC(_TPH 1+ (TC(_TPH

1f G4 1s selected to make T4=0

D(s)

Plant

Cls)
o

Geq ‘—'——a—-— Gyls)
Compensator
+ M(s) .
Gls) »1G(s)
H(s) |==
DGs)— » Ty —» C(s)

G,-G.,G.G,=0

"G, =G

T
c —-y
G,

G,




Steady State Error

Error after the transient response has decayed (t->inf)

Open Loop R(s) —»| G(s)

> Y(s)

Error Eo(s) = R(s) - Y(s) = R(s) - G(s)R(s)
=R(s) [1- G(s)]

Closed Loop

Error
1

E(s5)= 1+(s)

R(s)



Steady State Error

e The final value theorem ;4 e(t) = limsE(s)

f—0 s—0

e Error for unit step mput
1
u(ty =~ ¢ > ()
31

1) Open Loop case

s—0

e, () =lim S[E (5;)]l = lim[l - G(S)] =1-G(0)
s—0 s

e (::#.’;') — £1_1;[[']1 S

2) Closed Loop Case | ) I
L+ G(s)]s 1+ G(0)

- G(0) 1s the dc gain and usually greater than 1. If
G(0) >> 1, closed-loop error €.(*) is very small



: - . K 1
<Example> Consider T.F. G(s) = 1 Input R(s) = —
s+ 5

Open Loop case

1
E(s)=[1+G(s)]R(s) = [1-G(9)]

ey(®) =limE,(s) =1-G(0)=1-K

Closed Loop Case

E{,(S) — : R(S) — 1 l
| 1+ G(s) 1+G(s) s
1

I+ K

e, () =lmsE (s) =



f'_

. : . K 1
<Example> Consider T.F. G(s)= 1 Input R(s) = —
s+ s

1. For open loop if K= 1; &() =0 However, during
the operation the parameter of G(s) will change due
to environment changes.

2. Closed loop error €.(*) can be reduced by selecting

1
high gain of K (if K= 100, () =)

3. In case of the gain setting drifts or changes
Ak |
(7 =01), open loop A¢ () =0.1 (10%) while

closed loop: K= 100 - 90
1 1
Ae (o) = ——=0.0011 0.11%
(o) = (0.11%)




System Error

R + E : Y T = < = &
T G > 1-(-GH) 1+GH
T e— Output ¥7s) = I7s)-R(s)
G
Y(s)= R(s
() 1+ GH ()

Since Y(s) = E(s)-G(s) = E(s)= Y(s)/G(s)
1
E(s)= R(s
(5) 1+ GH ()

Actual error = Reference Input — Output (R — 1)




System Error

Since Y(s) = E(s)-G(s) = E(s)= Y(s)/G(s)
|
E(s)= R(s
(5) 1+ GH ()

Actual error = Reference Input — Output (R — 1)

Case 1: e of unity feedback sys. (H=1)

1

= R =R-7Y
1+G

It’s the actual error.

Case 2: e_, of non-unity feedback sys. (H = 1)
1
14G-H
Use E =R(s)—Y(s) =R(s)—1(s) « R(s)

= [1 - T(s)] -R(s)

R =R-Y-H It’s not the actual error.




1

<Ex> find K for a zero steady-state error for R(s) = -

k > Y
(z+2)

G+ K
G (s+2) B K(s+4)

T(s)=

1+G.H"1+ K 2 s> +65+8+2K
(s+2)(s+4)

Using E(s) = (1 -T) R(s)
+ 1 4k  8-2k
ESSZJ’I?HSU—D; =1-T(0)=1- S+ 2k 8+2k

Fore,=0—-> 8-2k=0—->K=4



