Review

Characteristic Equation From State Space Equation

$$[sI-A]^{-1}=\phi(s)$$

Characteristic Equation: det(sI-A)=0

Chapter 4 Feedback Control System Characteristics

- ☐ Transient and Steady-State Response Analysis
- Sensitivity to Model Uncertainties
- ☐ Steady-state Errors $(t \rightarrow \infty)$: $Y(\infty)$, $E(\infty)$
- Disturbance Rejection

Typical Test Signals

- Step functions (*)
- Ramp functions (*)
- Impulse functions (*)
- Parabolic functions
- Sinusoidal functions (Later in frequency analysis)
- White noise

Test signals

Transient and Steady-State Response

Time response has two parts:

- 1) Transient Response: System response from initial state to final state
- 2) Steady-state Response: System response when *t* approaches infinity.

$$c(t) = C_{tr}(t) + C_{ss}(t)$$

First Order Systems

$$c(t) = C_{tr}(t) + C_{ss}(t)$$

$$\frac{C(s)}{R(s)} = \frac{1}{Ts+1}$$

Unit step response of first order systems

$$C(s) = G(s)R(s)$$

$$C(s) = \frac{1}{Ts+1} L\{u(t)\}$$

$$= \frac{1}{Ts+1} \frac{1}{s} = \frac{A}{s} + \frac{B}{Ts+1}$$

$$= \frac{1}{s} - \frac{T}{Ts+1} = \frac{1}{s} - \frac{1}{s+(1/T)}$$

$$c(t) = 1 - e^{-\frac{t}{T}} \quad \text{for } t \ge 0$$

$$From Eq (1),$$

$$At t = 0, c(t) = 0$$

$$At t \to \infty, c(t) = 1$$

Unit ramp response of first order systems

$$C(s) = G(s)R(s)$$

$$C(s) = \frac{1}{Ts+1} L\{r(t)\}$$

$$= \frac{1}{Ts+1} \frac{1}{s^2} = \frac{1}{s^2} - \frac{T}{s} + \frac{T^2}{Ts+1}$$

$$c(t) = t - T + Te^{-t/T} \quad \text{for} \quad t >= 0$$

Error signal $e(t) = r(t) - c(t) = T(1 - e^{-t/T})$ At $t = \infty$, $e(\infty) = T$

Unit impulse response of first order systems

$$C(s) = G(s)R(s)$$

$$C(s) = \frac{1}{Ts+1} L\{\delta(t)\}$$

$$= \frac{1}{Ts+1} . 1 = \frac{1}{T} \frac{1}{s+1/T}$$

$$c(t) = \frac{1}{T} e^{-t/T} \quad \text{for} \quad t >= 0$$

$$c(t) = \frac{1}{T}e^{-t/T}$$

Example of first order system

$$G(s) = \frac{v(s)}{F(s)} = \frac{1}{ms+b} = \frac{1/m}{s+b/m}$$

The above relation gives the transfer function of the system in Pole-Zero form with poles at s = -b/m, no finite zero and gain constant = 1/m.

Also, G(s) can be written as,

$$G(s) = \frac{1/b}{(m/b)s+1}$$

$$\tau = m/b$$
 and $K = 1/b$

Since F(s) = 1/s for a unit step input, we have

$$V(s) = \frac{1}{s} \frac{K}{\tau s + 1}$$

Expanding the above equation by partial fraction we have

$$V(s) = K \left[\frac{1}{s} - \frac{\tau}{s\tau + 1} \right]$$

Taking the inverse Laplace Transform we get the unit step response of the first order mechanical (or any other first order system) system as

$$v(t) = K(1 - e^{-t/\tau})$$

The step response as given by the above Equation is plotted in Figure below; the two components of the response are plotted separately along with the complete response. Mathematically, the exponential term does not decay to zero in a finite length of time. The parameter τ is called the system time- constant.

The decay of the exponential term is illustrated with the help of following Table

t	$e^{-t/ au}$
τ	$e^{-1} = 0.3679$
2τ	$e^{-2} = 0.1353$
3τ	$e^{-3} = 0.0498$
4 τ	$e^{-4} = 0.0183$
5τ	$e^{-5} = 0.0067$

For different values of τ , the **step response** of a first order system is also shown in the following Figure.

The parameter *K* is the *system gain*, which tells us how much the output variable will change at steady-state in response to a unit change in the input variable

The gain K and time-constant τ are the two parameters which describe the 'personality' of the first-order system. These parameters may be obtained from the physical parameters of the system or experimentally by conducting the step-response test/sinusoidal-response test. The transfer function

$$G(s) = \frac{K}{\tau s + 1}$$

is called the time-constant form for first-order transfer functions and will be encountered in all types of systems—electrical, mechanical, thermal, hydraulic, etc. A process described by this form of transfer function is called a *first- order lag* or a *simple lag*.

Example of a Second Order System

As an example of a dynamic system represented by a second-order model, we consider here the spring-mass-damper system studied earlier and shown again in the following Figure.

Spring-Mass-Damper System

$$M\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = r(t)$$

We see that the differential equation is a constant coefficient second order differential equation and hence the system is a second order LTI system. The transfer function of the system with r(t) as the input and y(t) as the output is

$$G(s) = \frac{Y(s)}{R(s)} = \frac{1}{ms^2 + bs + k} = \frac{1/m}{s^2 + \frac{b}{m}s + \frac{k}{m}}$$

The equation gives a second order system with two poles and no finite zero.

The above transfer can be written in a more standard form as

$$G(s) = \frac{Y(s)}{R(s)} = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Where

$$K = \frac{1}{k}$$
; $\omega_n = \sqrt{\frac{k}{m}}$; $\xi = \frac{1}{2} \frac{b}{\sqrt{km}}$

on = Un-damped natural frequency of the system

ξ = Damping ratio of the system

The characteristic equation is

$$s^2+2\xi\omega_n s+\omega_n^2=0$$

The roots of the characteristic equations that are the poles of the transfer function are

$$s_1 = -\xi \omega_n + \omega_n \sqrt{\xi^2 - 1}$$
 and $s_2 = -\xi \omega_n - \omega_n \sqrt{\xi^2 - 1}$

Transfer function of a second order system (K=1)

G(s) =
$$\frac{Y(s)}{R(s)} = \frac{{\omega_n}^2}{s^2 + 2\xi \omega_n s + {\omega_n}^2}$$
 (1)

 ω_n = Un-damped natural frequency of the system

 ξ = Damping ratio of the system

The characteristic equation is

$$s^2 + 2\xi \omega_n s + \omega_n^2 = 0$$

The roots of the characteristic equations that are the poles of the transfer function are

$$s_1 = -\xi \omega_n + \omega_n \sqrt{\xi^2 - 1}$$
 and $s_2 = -\xi \omega_n - \omega_n \sqrt{\xi^2 - 1}$

From equation (1), we can write

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} R(s)$$

For unit step

$$\begin{split} Y(s) &= \frac{\omega_{n}^{2}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}} \frac{1}{s} \\ &\Rightarrow Y(s) = \frac{-s - 2\xi\omega_{n}}{\left(s + \xi\omega_{n}\right)^{2} + \omega_{n}^{2}\left(\sqrt{1 - \xi^{2}}\right)^{2}} + \frac{1}{s} \\ &\Rightarrow y(t) = 1 - \frac{1}{\omega_{n}\sqrt{1 - \xi^{2}}} \left[\left(\xi\omega_{n}\right)^{2} + \omega_{n}^{2}\left(\sqrt{1 - \xi^{2}}\right)^{2} \right]^{1/2} e^{-\xi\omega_{n}t} \sin(\omega_{n}\sqrt{1 - \xi^{2}}t + \theta) \\ &\Rightarrow y(t) = 1 - \frac{1}{\sqrt{1 - \xi^{2}}} e^{-\xi\omega_{n}t} \sin(\omega_{n}\sqrt{1 - \xi^{2}}t + \theta) \end{split}$$

Assuming
$$\beta = \sqrt{1-\xi^2}$$

$$y(t) = 1 - \frac{1}{\beta} e^{-\xi \omega_n t} \sin(\omega_n \beta t + \theta)$$

where,
$$\theta = \tan^{-1} \frac{\omega_n \beta}{\xi \omega_n} = \tan^{-1} \frac{\sqrt{1-\xi^2}}{\xi}$$

$$\tan \theta = \frac{\sqrt{1-\xi^2}}{\xi}$$

$$\sec^2 \theta = 1 + \frac{1 - \xi^2}{\xi^2} = \frac{1}{\xi^2}$$

$$\theta = \cos^{-1} \xi$$

ICs?

Step Response of a Second Order System

Unit Impulse Response of a Second Order System

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} R(s)$$

$$= \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} .1$$

$$y(t) = \frac{\omega_n}{\beta} e^{-\xi\omega_n t} \sin(\omega_n \beta t).$$

$$y(t) = \frac{\omega_n}{\beta} e^{-\xi\omega_n t} \sin(\omega_n \beta t).$$

Closed Loop Control

• If G(s)H(s)>>1 for all complex freq. of interest, then:

$$Y(s) = \frac{G}{1 + G \cdot H} R \longrightarrow \frac{G}{G \cdot H} R = \frac{1}{H} R$$

If H = 1, Y(s) = R(s) the desired result

Closed Loop Control

- By increasing the gain of G(s)H(s) it reduces the effect of G(s) on the input -> variation of the parameters of the process, G(s), is reduced (advantage of a feedback system)
- But, making G(s)H(s)>>1 can lead to highly oscillatory & even unstable response

$$Y(s) = \frac{G}{1 + G \cdot H} R \longrightarrow \frac{G}{G \cdot H} R = \frac{1}{H} R$$

$$R \longrightarrow G \longrightarrow Y$$

$$H \longrightarrow H$$

When Process, G(s), is changed

 $< Open loop > \Delta Y(s) = \Delta G(s)R(s)$

<Closed loop>

$$Y(s) + \Delta Y(s) = \frac{G(s) + \Delta G(s)}{1 + (G(s) + \Delta G(s))H(s)}R(s)$$
Then the change in the output is
$$Y(s) = \frac{G}{1 + G \cdot H}R$$

Then the change in the output is

$$\Delta Y(s) = \frac{\Delta G(s)}{\left(1 + GH(s) + \Delta GH(s)\right)\left(1 + GH(s)\right)} R(s).$$

When $GH >> \Delta GH(s)$, as is often the case, we have

Original T. F.
$$\frac{GH>>\Delta GH(s), \text{ as is often the case, we follow the case, which is a ca$$

Change of the output is reduced by [1 +GH]

System Sensitivity

$$S_G^T = \frac{\text{Ratio of \% change in sys T.F.}}{\text{Ratio of \% change in "Process" T.F.}}$$

$$\frac{\Delta T/T}{\Delta G/G} = \frac{\partial \ln T}{\partial \ln G} = \frac{\partial T}{\partial G} \frac{G}{T}$$

Open-loop

$$\Delta Y(s) = \Delta G(s)R(s), \ \Delta T(s) = \frac{\Delta Y(s)}{R(s)} = \Delta G(s)$$

System Sensitivity

Closed-loop

$$T(s) = \frac{G}{1+GH} \cdot \frac{\partial T}{\partial G} = \frac{(1+GH)-G(H)}{(1+GH)^2} = \frac{1}{(1+GH)^2}$$

$$S_G^T = \frac{\partial T}{\partial G} \cdot \frac{G}{T} = \frac{1}{\left(1 + GH\right)^2} \frac{G}{\frac{G}{1 + GH}} = \frac{1}{\left(1 + GH\right)}$$

Reduced S_G^T below that of the open-loop sys by increasing G^*H (>>1.0). $S_H^T = \frac{\partial T}{\partial H} \cdot \frac{H}{T} = \frac{-GH}{(1+GH)}$

* if
$$GH >> 1.0 \rightarrow S_G^T = -1$$

Feedback components should not be varied with environmental changes \rightarrow change in H(s) directly effect output response

Disturbance in a system

Disturbance

 $= G_{r}(s)M(s) + G_{d}(s)D_{r}(s)$

Disturbance in a system

State Variable Model

$$\dot{X} = Ax + Bu
v = Cx$$

$$\mathbf{u} = \begin{bmatrix} m(t) \\ d(t) \end{bmatrix}$$

Then T.F.
$$G(s) = C[sI-A]^{-1}B$$

= $[G_p(s) G_d(s)]$

T.F. from the control Input M(s) to the output

T.F. from D(s) to the output

Disturbance in a close loop system

Disturbance in a close loop system

$$C(s) = \left[\frac{G_c G_p}{1 + G_c G_p H}\right] R(s) + \left[\frac{G_d}{1 + G_c G_p H}\right] D(s)$$
$$= T(s) R(s) + T_d(s) D(s)$$

• The loop gain $G_c \cdot G_p \cdot H$ must be made large to reduce the system sensitivity.

$$T_{d} = \frac{G_{d}}{1 + G_{c}G_{p}H} = \frac{G_{d}}{G_{c}G_{p}H}$$

Reducing Disturbance

- 1. Reduce the gain $G_d(s)$
- 2. Increase the loop gain $G_c \cdot G_p \cdot H$ (Choice of G_c)
- 3. Reduce the disturbance d(t)
- Feed forward method if the disturbance can be measured

Example: Feed Forward Method

T.F of the disturbance

$$T_{d} = \frac{G_{d}}{1 + G_{c}G_{p}H} + \frac{-G_{cd}G_{c}G_{p}}{1 + G_{c}G_{p}H}$$

if G_{cd} is selected to make $T_d = 0$

$$G_d - G_{cd}G_cG_P = 0$$

$$\therefore G_{cd} = G_c \frac{G_d}{G_P}$$

Steady State Error

Error after the transient response has decayed (t→inf)

Closed Loop

Steady State Error

• The final value theorem

$$\lim_{t\to 0} e(t) = \lim_{s\to 0} sE(s)$$

• Error for unit step input

$$u(t) \to \frac{1}{s} \quad t \ge 0$$

1) Open Loop case

$$e_0(\infty) = \lim_{s \to 0} s [E(s)] \frac{1}{s} = \lim_{s \to 0} [1 - G(s)] = 1 - G(0)$$

2) Closed Loop Case

$$e_c(\infty) = \lim_{s \to 0} s \left[\frac{1}{1 + G(s)} \right] \frac{1}{s} = \frac{1}{1 + G(0)}$$

- \rightarrow G(0) is the dc gain and usually greater than 1. If
- G(0) >> 1, closed-loop error $e_c(\infty)$ is very small

Example> Consider T.F.
$$G(s) = \frac{K}{s+1}$$
 Input $R(s) = \frac{1}{s}$

Open Loop case

$$E_c(s) = [1 + G(s)]R(s) = [1 - G(s)]\frac{1}{s}$$

$$e_0(\infty) = \lim_{s \to 0} E_c(s) = 1 - G(0) = 1 - K$$

Closed Loop Case

$$E_c(s) = \frac{1}{1 + G(s)} R(s) = \frac{1}{1 + G(s)} \frac{1}{s}$$

$$e_c(\infty) = \lim_{s \to 0} s E_c(s) = \frac{1}{1 + K}$$

Example> Consider T.F.
$$G(s) = \frac{K}{s+1}$$
 Input $R(s) = \frac{1}{s}$

- 1. For open loop if K = 1; $e_0(\infty) = 0$. However, during the operation the parameter of G(s) will change due to environment changes.
- 2. Closed loop error $e_c(\infty)$ can be reduced by selecting high gain of K (if K = 100, $e_c(\infty) = \frac{1}{101}$)
- 3. In case of the gain setting drifts or changes

$$(\frac{\Delta k}{k} = 0.1)$$
, open loop $\Delta e_0(\infty) = 0.1$ (10%) while closed loop: $K = 100 \rightarrow 90$

$$\Delta e_c(\infty) = \frac{1}{101} - \frac{1}{91} = 0.0011$$
 (0.11%)

System Error

Since
$$Y(s) = E(s) \cdot G(s) \rightarrow E(s) = Y(s)/G(s)$$

$$E(s) = \frac{1}{1 + GH} R(s)$$

Actual error = Reference Input – Output (R - Y)

System Error

Since
$$Y(s) = E(s) \cdot G(s) \rightarrow E(s) = Y(s)/G(s)$$

$$E(s) = \frac{1}{1 + GH} R(s)$$

Actual error = Reference Input – Output (R - Y)

Case 1: e_{ss} of unity feedback sys. (H = 1)

$$E = \frac{1}{1+G}R = R - Y$$

It's the actual error.

Case 2: e_{ss} of non-unity feedback sys. $(H \neq 1)$

$$E = \frac{1}{1 + G \cdot H} R = R - Y \cdot H$$
 It's not the actual error.

Use
$$E = R(s) - Y(s) = R(s) - T(s) \cdot R(s)$$

= $[1 - T(s)] \cdot R(s)$

 $\langle \mathbf{E} \mathbf{x} \rangle$ find **K** for a zero steady-state error for $R(s) = \frac{1}{s}$

Using
$$E(s) = (1 - T) R(s)$$

 $\mathbf{e}_{ss} = \lim_{s \to \infty} s (1 - T) \frac{1}{s} = 1 - T(0) = 1 - \frac{4k}{8 + 2k} = \frac{8 - 2k}{8 + 2k}$

For
$$e_{ss} = 0 \rightarrow 8 - 2k = 0 \rightarrow K = 4$$